Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38709605

RESUMO

Continual semantic segmentation (CSS) based on incremental learning (IL) is a great endeavour in developing human- like segmentation models. However, current CSS approaches encounter challenges in the trade-off between preserving old knowledge and learning new ones, where they still need large-scale annotated data for incremental training and lack interpretability. In this paper, we present Learning at a Glance (LAG), an efficient, robust, human- like and interpretable approach for CSS. Specifically, LAG is a simple and model-agnostic architecture, yet it achieves competitive CSS efficiency with limited incremental data. Inspired by human- like recognition patterns, we propose a semantic-invariance modelling approach via semantic features decoupling that simultaneously reconciles solid knowledge inheritance and new-term learning. Concretely, the proposed decoupling manner includes two ways, i.e., channel- wise decoupling and spatial-level neuron-relevant semantic consistency. Our approach preserves semantic-invariant knowledge as solid prototypes to alleviate catastrophic forgetting, while also constraining sample-specific contents through an asymmetric contrastive learning method to enhance model robustness during IL steps. Experimental results in multiple datasets validate the effectiveness of the proposed method. Furthermore, we introduce a novel CSS protocol that better reflects realistic data-limited CSS settings, and LAG achieves superior performance under multiple data-limited conditions.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 11932-11947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37155379

RESUMO

As a front-burner problem in incremental learning, class incremental semantic segmentation (CISS) is plagued by catastrophic forgetting and semantic drift. Although recent methods have utilized knowledge distillation to transfer knowledge from the old model, they are still unable to avoid pixel confusion, which results in severe misclassification after incremental steps due to the lack of annotations for past and future classes. Meanwhile data-replay-based approaches suffer from storage burdens and privacy concerns. In this paper, we propose to address CISS without exemplar memory and resolve catastrophic forgetting as well as semantic drift synchronously. We present Inherit with Distillation and Evolve with Contrast (IDEC), which consists of a Dense Knowledge Distillation on all Aspects (DADA) manner and an Asymmetric Region-wise Contrastive Learning (ARCL) module. Driven by the devised dynamic class-specific pseudo-labelling strategy, DADA distils intermediate-layer features and output-logits collaboratively with more emphasis on semantic-invariant knowledge inheritance. ARCL implements region-wise contrastive learning in the latent space to resolve semantic drift among known classes, current classes, and unknown classes. We demonstrate the effectiveness of our method on multiple CISS tasks by state-of-the-art performance, including Pascal VOC 2012, ADE20K and ISPRS datasets. Our method also shows superior anti-forgetting ability, particularly in multi-step CISS tasks.

3.
IEEE Trans Image Process ; 31: 2878-2892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358045

RESUMO

Unsupervised domain adaptation (UDA) aims to enhance the generalization capability of a certain model from a source domain to a target domain. Present UDA models focus on alleviating the domain shift by minimizing the feature discrepancy between the source domain and the target domain but usually ignore the class confusion problem. In this work, we propose an Inter-class Separation and Intra-class Aggregation (ISIA) mechanism. It encourages the cross-domain representative consistency between the same categories and differentiation among diverse categories. In this way, the features belonging to the same categories are aligned together and the confusable categories are separated. By measuring the align complexity of each category, we design an Adaptive-weighted Instance Matching (AIM) strategy to further optimize the instance-level adaptation. Based on our proposed methods, we also raise a hierarchical unsupervised domain adaptation framework for cross-domain semantic segmentation task. Through performing the image-level, feature-level, category-level and instance-level alignment, our method achieves a stronger generalization performance of the model from the source domain to the target domain. In two typical cross-domain semantic segmentation tasks, i.e., GTA 5→ Cityscapes and SYNTHIA → Cityscapes, our method achieves the state-of-the-art segmentation accuracy. We also build two cross-domain semantic segmentation datasets based on the publicly available data, i.e., remote sensing building segmentation and road segmentation, for domain adaptive segmentation. Our code, models and datasets are available at https://github.com/HibiscusYB/BAFFT.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...